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Calculations of the hydrogenic impurity discrete states in the partially closed spherical semiconductor core-shell quantum 
antidot (QAD) are performed under effective mass approximation. On the basis of the analytical solutions of the Scrödinger 
and Poisson equations for multilayered quantum antidot (MLQAD) with hydrogenic impurity located in the center, energies 
of an electron bound states in closed part of potential and corresponding wave functions are determined. Particular 
core/shell/surrounding medium nanoheterosystem under investigation is CdTe/ZnTe/CdTe MLQAD. ZnTe shell forms 
potential barrier. The influence of increasing core and shell size on the ground state (1s) energy and corresponding radial 
probabilities are presented in this paper. For small core radius 1s orbital expands out of the shell with energy just below the 
bottom of the outer material conduction band i.e. core material in this particular case. When core radius increases, at 
characteristic radius value, 1s orbital contracts into the core region and the ground state energy decreases. For very large 
core radius, energy of 1s state reaches constant value, characteristic for bulk core material. 
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1. Introduction 
 

Low-dimensional structures doped by hydrogenic 

impurity change their optical, electrical and thermal 

properties. In last few years, hydrogenic impurity confined 

in QD [1-5], multi-layered quantum dot (MLQD) [5-10] or 

quantum antidots (QAD) [11-15] have been investigated 

intensively. Results of these investigations explain how the 

presence of hydrogenic impurity influences on properties 

of different heteronanostructures. 

The most investigations deal with so called “closed” 

nanostructures, with stationary electron states [1-10]. 

There is increasing interest for “opened” systems [8, 11-

15]. If there is potential barrier in heterostructure, 

compared to the potential of surrounding space, the system 

is opened.  We denote potential of surrounding space as 

V(∞). In energy region E >V(∞) spectrum is characterized 

by quasistationary states and in energy region E <V(∞) 

discrete spectrum of bound states is formed. 

Nanoheterostructure CdTe/ZnTe/CdTe is an example of 

such a structure. In the absence of hydrogenic impurity it 

is an opened QD: V(r) ≥V(∞) with quasistationary states 

[16,17]. Presence of hydrogenic impurity in the system 

produces potential V(r) <V(∞) in some regions of the QD, 

and consequently formation of bound states with energy 

E<V(∞). 

In this paper we deal with the “opened” system but 

only in the energy region of bound states. We present 

results of calculation of one-electron opened multi-layered 

spherical QAD. QAD consists of CdTe spherical core 

coated by spherical ZnTe shell i.e. potential barrier, 

surrounded by bulk CdTe with a hydrogenic impurity in 

the center. 
 

2. Theory and calculations 
 

Investigated semiconductor MLQAD can be described 

as a system composed of an electron and a positively 

charged donor impurity located at the centre of the 

multilayered spherical potential (D
0
). A single MLQAD is 

considered. The validity of the effective mass 

approximation is assumed. Difference of the electron 

effective masses
 

and dielectric constants
 

between QD 

regions are considered. 

 The stationary Schrödinger equation for D
0
 in the 

effective mass approximation, considering that electron 

spectra is mainly formed by size quantization, has the form 
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is the effective mass of an electron in the heterosystem.  

The potential energy of interaction of an electron with 

positively charged ion located at the center of spherical 

MLQD is solution of Poisson equation and has the form 

[15] 
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We examined case Z = 1 i.e. hydrogen like impurity. The 

confinement potential is 
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We assigned a potential energy as zero on the top of 

the barrier. U0 is barrier height. εi are the corresponding 

static dielectric constants. In energy scale assumed in this 

manner V(∞) =W(∞)+U(∞) =U0. The barrier width, 

r2  r1, is assigned as . Scheme of the potential energy, on 

the basis of relations (3) and (4), for particular structure 

examined in this paper, at r1 = 2 nm and = 2 nm is 

presented in Fig.  1.  
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Fig. 1.  Potential energy U(r)+W(r) at r1 = 2 nm and = 2 nm. 

 

Without impurity, Z = 0, it is an example of opened 

spherical MLQD. There are no bound states. In energy 

region E >U0 there are quasi stationary states [16, 17]. In 

the presence of hydrogenic impurity in the center, 

Coulomb potential produces two potential wells: the deep 

one inside the core (r < r1) and shallow one outside the 

barrier (r > r2). This enables existence of bound states in 

energy region E <U0, i.e. below conductive band core 

energy. In this paper we investigate bound states i.e. states 

in energy region E <U0. Composition in which electron is 

localized outside the barrier is usually assigned as 

quantum antidot. 

For spherically symmetric potential, U(r) and W(r), 

the separation of radial and angular coordinates leads to: 

 

),()()(  θYrRr lmllm  .  (5) 

 

Rl(r) is the radial wave function, and Ylm(θ,φ) is a spherical 

harmonic. The differential equation for the radial function 

Rl(r) can be written as:  
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The radial function Rl(r), consist of three parts, 

because it spreads through three different regions: 
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Solutions must satisfy conditions Rl(r) to be regular 

when r = 0 and to vanish sufficiently rapidly when r→∞. 

In spherical MLQD with impurity, differential 

equation (6) concerns to all, separated, QD regions. 

Problem has analytical solutions. In each QD region there 

are two energy regions, where equation (6) transforms to 

different equations with corresponding analytical 

solutions. We assigned that characteristic energy off each 

QD region as Ui
*
. It is the depth of effective potential well. 

In the system under investigation there are three geometry 

regions: r  r1, r1  r  r2 and r  r2. Effective potential is 

defined as: 
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i = 1, 2 and 3 correspond to regions r  r1, r1  r  r2 and 

r  r2, respectively. Effective potentials depend on 

dimensions in heterostructure and the dielectric 

permittivities. In a system where: ε1 = ε3 > ε2, only 

effective potential U1
*
, characteristic for core region 

belongs to energy region E U0. In energy region 

E U1
*
 conditions E U2

*
 and E U3

*
 are already 

fulfilled. 

For energy range E U1
*
, introducing convenient 

parameters: αi
2
 = 8mi

*
(E+Ui

*
)/ћ

2
, ξi = αir, 

λi = 2mi
*
e

2
/4εiћ

2
αi, R

i
(ξi) = ξi 

-1
χ(ξi), the radial 

Schrödinger equation becomes: 
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Equation (9) is the Whittaker equation with two linearly 

independent solutions and the radial wave functions in 

three regions are:  

 

),
2

1
,(

1
),

2

1
,(

1
)( 211 rlWCrlMCrR ii

i

iii

i

ia

i

l 





 
, 

   

  i = 1, 2, 3. (10) 

 

C1i and C2i are the normalization constants, M and W are 

Whittaker functions. For C21 = 0 assumed solutions satisfy 

conditions to be regular at r = 0 and C13 = 0 to vanish 

sufficiently rapidly when r→.  

For energy range U1
*
 < E < U0, introducing 

parameters for i = 1, r
 
 r1, α1b

2
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*
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2
  0, 
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*
e

2
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-1
F(ξ1), equation 

(6) becomes: 
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Equation (11) is the Coulomb equation which have 

two linearly independent solutions )( 1,1
 lF  and )( 1,1

 lG . 

)( 1,1
 lG  is a singular at ξ1 = 0, hence the wave function of 

the radial part is expressed as: 

 

)(
1

)( 1,11

1

1



  lbbl FCrR  .              (12) 

C1b is the normalization constant. The regular Coulomb 

wave  function F,l()
 
is defined in the following way:
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M and  are Whittaker and Gamma functions. In relations 

(13) and (14) i is imaginary number.  

For energy range U1
*
 < E <U0, and radius regions 

r1  r  r2 (i = 2) and r  r2 (i = 3), conditions E U2
*
 and 

E U3
*
 are already fulfilled , equation (6) transforms to 

Wittaker equation (9), that leads to already described 

solutions. 

The wave functions and the probability current at the 

boundary of the layers of the system must satisfy 

continuity conditions. This leads to the system of linear 

equations characteristic for each l. Solutions of this system 

are eigenenergies Enl. Solutions are numerated by n in the 

order of increasing energy. Among all states, the lowest 

energy solution is l = 0, n = 1 i.e. it is ground state (1s). 

After normalization, corresponding radial part of wave 

function Rnl(r) is determined. 

 

 

3. Results and discussion 
 

Method presented in previous section is used for 

investigation of heterostructure that consists of CdTe core 

(1), ZnTe barrier (2) and CdTe surrounding material (3). 

We have used the material parameters 

me1
*
 = me3

*
 =mCdTe

*
 = 0.099me, me2

*
 = mZnTe

*
 = 0.116me, 

r1 =r3= rCdTe = 10.2, r2 = rZnTe = 7.4, U1 = 0.67 eV. The 

effective Bohr radius of material, defined as 

aB
*
 = ħ

2
4ε/me

*
e

2
,
 
is often used as the unit of the length. 

 For examined materials: aB1
*
 ≈ 5.4 nm for CdTe 

and aB2
*
 ≈ 3.376 nm for ZnTe. The effective Rydberg of 

material, defined as Ry
*
 = m

*
e

4
/2ħ

2
(4


ε

2
,
 
can be used as 

unit of the energy. In this case Ry1
*
 =Ry3

*
 ≈ 13.06 meV for 

CdTe and Ry2
*
 ≈ 28.82 meV for ZnTe. 

In the examined structure, there are two geometry 

parameters that determine structure of the QD: core radius 

r1 and outer dot radius r2 or barrier width Δ= r2  r1. As 

can be seen from relations (3) and (4) and presentation in 

Fig. 1. three characteristic potential regions can be 

separated: r < r1 is region of deep potential well in CdTe 

core; r1< r <r2 = r1+Δ region of potential barrier in ZnTe 

shell and region r >r2 of shallow well outside the dot i.e. in 

the surrounding CdTe. Outer radius is a shallow well 

distance from the dot center. Depth of the shallow well 

outside the dot depends only on the outer dot radius and 

dielectric permittivity: ε3 (ε1 = ε3). Depth of the shallow 

well is ~1/(r2 ε3). Outer radius increase produces the 

shallow well depth decrease. 

Results of calculated energies for ground state, first 

solution for orbital quantum number l = 0 i.e. 1s state, for 

increasing core radius r1 from 0 to 60 nm ≈ 11 aB1
*
 and 

four different barrier widths  Δ (1 nm, 5 nm, 10 nm and 

50 nm) are presented in Fig. 2. With the increase of the 

core radius r1 for constant barrier thickness Δ, outer dot 

radius r2 increases. 

0 10 20 30 40 50 60
-0.686

-0.684

-0.682

-0.680

-0.678

-0.676

-0.674

-0.672

-0.670

E
n

er
g

y
 [

eV
]

r
1
 [nm]

 =1nm

 =5nm

 =10nm

 =50nm

 =infinity

=0
-U

0
-Ry*

1

0 2 4 6 8 10
r

1
 [ a

*

B1
 ]

 
Fig. 2. One electron ground state energy in spherical 

CdTe/ZnTe/CdTe QD with hydrogen impurity in the 

center as function of core radius r1, (Z = 1, l = 0, n = 1) 

for four different barrier  widths   = 1 nm, 5 nm, 10 nm  

                                   and 50 nm. 

 

 

We start analysis of results for small core radius. 

Calculated energies for QAD of r1 = 0 are added as points 
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at the beginning of each curve as solid symbol of the same 

shape as the rest of the curve. Results for small core radius 

r1, Fig. 2. practically reach values of r1 = 0 case. In Fig. 2. 

we present results for four different barrier widths only. To 

complete the picture about system behavior for case r1= 0, 

r2= Δ we present results separately in Fig. 3. 

For r1 = 0 this multilayered QD becomes QAD, with 

material of higher potential (ZnTe) in the center that forms 

core of radius r2 = . Calculated energies are presented in 

Fig. 3. Potential scheme of r1 = 0, r2 =   nm case is 

presented in the insert in Fig. 3. Slope of the potential 

curve in core region disables to see potential well in the 

core. Deep potential well is close to the center of the dot. 

Probability density spreads from r =   nm till few 

tenths nm with maximum in probability density at 

≈  nm ≈ 4.6 aB1
*
. For small ZnTe core dimension 

(r2 =  space of the deep well is in small radius region 

close to the center. This unables electron to locate in the 

core i.e. space of this deep potential well. Electron is 

pushed out of ZnTe core into the shallow well formed by 

Coulomb potential in the surrounding CdTe. As  

increases ( is now ZnTe core radius), distance of the 

shallow well, out of the dot, from the center increases, 

depth of the shallow well decreases and electron energy 

increases. This increase in energy is a sign that electron is 

forced to stay in a shallow well out of the dot, despite the 

fact of increasing dimension of the core. If U0 > Ry2
*
 (as in 

this case: 670 meV >>28.82 meV) electron will stay in 

shallow well for any dimension of core. If the barrier 

height U0 is smaller than Ry2
*
 (U0 <Ry2

*
), for large enough 

core radius electron would move into the core and energy 

would decrease. In the limiting case when  = 0 (r1 = 0, 

r2 = r1+Δ = 0, there is no barrier) electron is in potential of 

hydrogenic impurity in CdTe, characterized by mCdTe
*
 and 

rCdTe and has energy characteristic for 1s state: 

E1s=U0Ry1
*
≈683 meV, starting point in Fig. 3, with 

maximum in probability density at ≈1 aB1
*
.  
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Fig. 3. One electron ground state energy in spherical 

ZnTe/CdTe QAD (r1 = 0) with hydrogen impurity in the 

center  as  function  of  dot  radius  r2 =   (Z = 1,  l = 0,  

                                           n =1). 

 

When core radius (r1≠0) increases from 0 up to 

≈ 10 nm ≈ 2 aB1
*
, electron energy increases for any Fig. 

2This increase is a sign that electron is in the region of 

shallow well out of the dot. To illustrate properties of this 

system we present potential scheme and radial probability 

density for few characteristic compositions, Fig. 4. and 

Fig. 5. In Fig. 4. we present potential scheme and radial 

probability density for barrier thickness  = 5 nm. In Fig. 

4.a) r1= 5 nm < 1 aB1
*
, r2 = 10 nm. Electron is in the 

shallow well in the surrounding CdTe region, 

E1s =673 meV. Electron spreads up to 60 nm with 

maximum of the probability density at r 

≈ 25 nm ≈ 4.6 aB1
*
. Also, in Fig. 5.a) we present potential 

scheme and radial probability density for  = 10 nm and 

core radius r1 = 8 nm ≈ 1.5 aB1
*
 i.e. r2 = 18 nm ≈ 3.3 aB1

*
. 

Curve E1s for  = 10 nm reaches maximum at 

r1
max

 = 8.5 nm ≈ 1.6 aB1
*
, Fig. 2, and core radius of 8 nm is 

close to this value. Electron is in the shallow well and 

spreads up to 100 nm. Maximum of the probability density 

is at r ≈ 40 nm ≈ 7.4 aB1
*
. 

While electron is in the shallow well, among dots of 

same core radius (r1), dots of smaller barrier thickness 

(i.e. smaller QAD radius (r2 = r1+Δ), have deeper 

shallow well in radius region closer to the center of the dot 

and consequently smaller electron energy, Fig 2. 

E1s ( = 1 nm) < E1s ( = 5 nm)< E1s ( = 10 nm)<…< E1s 

( = 50 nm). This behavior is a sign that electron is in the 

region of shallow well. 
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Fig. 4. Potential scheme and ground state radial 

probability distribution for  = 5 nm and different r1 a) 

r1 = 5 nm < 1 aB1
*, b) r1 = 10 nm ≈1.85 aB1

* and c) r1 

= 15 nm ≈2.78 aB1
*. The energies of the levels are shown  

                                 by the dashed lines.  
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Fig. 5. Potential scheme and ground state radial 

probability distribution for  = 10 nm and different r1 a) 

r1 = 8 nm ≈1.48 aB1
*, b) r1 = 9 nm ≈1.67 aB1

* and c) r1 

= 10 nm ≈1.85 aB1
*. The energies of the levels are shown  

                                by the dashed lines. 



1004                                                                                  D. Stojanović, R. Kostić 

 

 

Energy increase slows down and from characteristic 

core radius electron energy rapidly decreases for all Δ. 

Core radius at which electron energy reaches maximum 

and than rapidly decreases (r1
max

) does not depend on the 

Δ value too much. For instance: for = 5 nm 

r1
max

 ≈ 9 nm ≈ 1.67 aB1
*
, for = 10 nm 

r1
max

 ≈ 8.5 nm ≈ 1.57 aB1
*
 and for = 50 nm 

r1
max

 ≈ 8 nm ≈ 1.48 aB1
*
, Fig. 2. Energy decrease is a sign 

that the dimension of the core is big enough and electron 

moves into the core region i.e. region of deep potential 

well. Potential scheme and radial probability density 

presented in Fig. 5. a) and b) illustrate that. For core radius 

r1 = 8 nm ≈ 1.48 aB1
*
 and  = 10 nm, Fig. 5. a), electron is 

completely in radius region r >r2 = r1+Δ, but for 

r1 = 9 nm ≈ 1.67 aB1
*
 and  = 10 nm electron is 

completely in the core, Fig. 5. b). Maximum in radial 

probability density is at r ≈ 4 nm ≈ 0.74 aB1
*
. For these 

two very similar compositions, electron is located in 

different part of the heterosystem. This drastic change in 

electron position is followed by minimal change in energy 

because we are in the vicinity of r1
max

( = 10 nm) 

≈ 8.5 nm ≈ 1.57 aB1
*
. If the core radius further increase 

just for 1 nm we get r1 = 10 nm ≈1.85 aB1
*
, Fig. 5. c). 

Electron stays in the deep well in the core CdTe region, 

energy decreases: E1s = 676 meV. 

Core radius region of drastic energy decrease is 

characterized with electron localized in the core but 

drastically confined. Core radius increase from 8 nm to 

15 nm produces drastic decrease in energy. When the core 

radius becomes big enough, electron will be situated in the 

next manner: maximum of radial probability density at 

r ≈ 5.4 nm ≈ 1 aB1
*
 and energy E ≈U1

*
Ry1

*
. Typical core 

radius values from region of drastic energy decrease are 

presented in Figs. 4. b), c) and 5. c). In Fig. 4. b) 

r1 = 10 nm ≈1.85 aB1
*
,  = 5 nm. Electron is in the deep 

well in the core CdTe region. Maximum of the probability 

density is at r ≈ 4 nm ≈ 0.74 aB1
*
. Electron energy is 

E1s = 675 meV. Further increase in core radius leads to 

situation presented in Fig. 4. c) where 

r1 = 15 nm ≈ 2.78 aB1
*
,  = 5 nm. Electron is in the deep 

well in the core CdTe region, E1s = 682 meV, still much 

above U1
*
Ry1

*
, and maximum of the probability density 

is at r ≈ 4.5 nm ≈ 0.83 aB1
*
.  

As the core radius further increases, this rapid 

decrease in energy slows down for all Δ and electron 

energy goes below U0Ry1
*
 value. Electron energy 

stabilizes for core radius r1 > 20 nm ≈ 3.7 aB1
*
, Fig. 2. 

Electron is localized in the core. It is in the Coulomb 

potential and has stabilized energy and probability density. 

Increase of core dimension does not influence on electron 

energy because size confinement does not play any role. 

There is a minimum in energy of 1s state: for  = 10 nm at 

core radius r1
min

 ≈ 25 nm ≈ 4.6 aB1
*
, for  = 5 nm at core 

radius r1
min

  ≈ 30 nm ≈ 5.55 aB1
*
 and for  = 1 nm at core 

radius r1 ≈ 40 nm ≈ 7.4 aB1
*
. This minimum is 

characterized by energy U1
*
(r1, Δ)Ry1

*
. Electron is in 

the core with maximum probability density close to 

r ≈ 1 aB1*, but in potential U1
*
(r1, Δ) resulting in energy 

Ry1
*
 below U1

*
. The wider the barrier the lower is U1

*
. 

That is why in case of the same core radius and wider 

barrier, energies are lower and minimum is more 

prominent. Minimum in energy is consequence of the 

already described approach. Potential energy of interaction 

of an electron with ion is solution of Poisson equation, 

equation (3), and consequently can be presented through 

effective potential, equation (8). Materials of core, barrier 

and surrounding medium are introduced as different 

dielectrics. Value of U1
*
 also depends on the dielectric 

properties of core, shell and surrounding materials: ε1, ε2 

and ε3. In the examined structure ε1 = ε3. For higher ε1 and 

smaller ε2, U1
*
 and consequently U1

*
Ry1

*
 will be lower 

in energy scale. Result is that minimums are at lower 

energy. If ε1 = ε2 = ε3
 

i.e. ε1 ε2 = ε2ε3 = 0, than 

U1
*
=U0, U2

*
= 0 and U3

*
=U0, there will be no 

minimum in energetic spectra. 

After minimum, energy slowly increases and 

stabilizes. This slow increase is consequence of slow 

increasing effective potential U1
*
. Energies are ~ U1

*
(r1, 

Δ)Ry1
*
. Electron energy is lower for wider barrier, Fig.2. 

This stabilized energy is a sign that electron is 

completely in the core with maximum probability density 

at r ≈ 1 aB1
*
≈ 5.4 nm, and electron is not very sensitive to 

the change in core or barrier dimension any more.  

In the region r1 > r1
max

 in the limit: →∞ i.e. r2→∞, 

electron behaves as it is in potential of hydrogenic 

impurity in closed CdTe/ZnTe QD. Solutions for the 

closed CdTe/ZnTe QD [18] in region below core material 

(CdTe) conduction band are presented in Fig. 2. by dashed 

line and assigned as →∞. This is the limit of the thickest 

barrier. That is why →∞ (dashed line) curve is the lowest 

one in core radius region r1 > 9 nm ≈ 1.6 aB1
*
, with the 

most prominent minimum located at 

r1
min

≈ 20 nm ≈ 3.5 aB1
*
, Fig. 2. As we can see from Fig. 2., 

energy maximums for different  positioned at r1
max

, are 

practically on the dashed curve (→∞). This is core-shell 

composition when electron starts to move from outer 

shallow well to the core.  

In the limit: r1→∞, electron behaves as it is in 

potential of hydrogenic impurity in CdTe and 

E1s→U0Ry1
*
≈683 meV (horizontal line at Fig. 2). This 

is almost achieved for the largest core radius presented in 

Fig. 2. The same value of energy is achieved for any 

radius r1 in limiting case    

Results presented in Figs. 2. and 3. are in accordance 

with the results of other authors where opened MLQAD 

[15] and QAD [11-14] were investigated.  

 

 

4. Conclusion 
 

Energies of ground state of CdTe/ZnTe/CdTe QAD in 

presence of hydrogenic impurity within effective mass 

approximation are calculated and presented. Presence of 

hydrogenic impurity changes “open” structure to partially 

“closed”. On the basis of exact solution of Poisson 

equation for this system we introduced effective potential 

for electron in the heterostructure. Consideration of the 

exact solution of the Poisson equation allows us to reveal 
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the presence of a minimum in the ground state energy 

spectra. 

For small core radius electron is forced to stay in a 

shallow potential well out of the barrier. Depth of the 

shallow well depends on the QAD radius and dielectric 

permittivity in surrounding medium. Shallow well is 

deeper for smaller QAD and small ε2. Electron energy 

increase as QAD radius increases. 

From characteristic core radius electron abruptly 

moves to the core i.e. region of deep potential well. This 

transition is followed by drastic decrease in energy till the 

minimum. Depth of deep well depends on the structure 

and dielectric properties. Potential well is deeper for 

higher ε1 value and lower ε2. For large core radius electron 

energy becomes stabilized (E ~ U0Ry1
*
) as if system is 

closed spherical CdTe/ZnTe QD. For large core radius 

electron is located in deep potential well in the core with 

maximum probability density at ≈1 aB1
*
. It is obvious that 

higher barrier more efficiently prevent penetration from 

the surrounding to the core with the core radius increase.  

Results presented in this paper concerns to MLQAD 

formed by CdTe and ZnTe, widely investigated 

constituents in nanoheterostructures, but these results give 

information on the nature of the impurity states in 

MLQADs. 
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